c m day / $D_{Earth\ equator}^2 = 1/(2\pi)$ 489 m MSL true or random? with the synodic day and the equatorial diameter of the Earth

Helmut Christian Schmidt

Ludwig-Maximilians-Universität München, Germany (Student)

www.physics-beyond-standard-model.com helmut.schmidt@physics-beyond-standard-model.com

Cosmos: Particles with the set of natural numbers

Man-made:

For every object i O_{d i} applies

3 spatial dimensions d : $\varphi r \theta$

divisor 2³

Measuring device:

Macroscopic, neutral, solid object O for comparison of at least 2 objects O_2 and O_1

Initial conditions: Earth diameter, sidereal and synodic periods Final result: Paper in m

Measurement:

easurement: $g_{d,i} \in \mathbb{Q}$ $g_{d,i} < 2\pi < g_{d+1,i}$ Static: $g_{d,i} \in \mathbb{Q}$ $E = \sum_{i=1}^{d} g_{d,i} (2\pi)^d = P(2\pi)$

Binding energy: $P(\pi)$ Neutral objects: $P(2\pi)$

$$Orbit_e = E_e = g_{f,e} \pi + 1 - g_{V,e} \pi^{-1}$$
 $g_{f} \ge 0$

$$E_e = g_{f,e} \pi - 1 - g_{V,e} \pi^{-1}$$
 $g_{f} \le 0$

photon:

$$E_{y} = p c = g_{f}(2\pi) + n/g_{f}e^{-i2\pi c/f/m + \varphi} - g_{V}I(2\pi)$$

free electron:

$$E_e = g_{t,e} (2\pi)^2 + g_{f,e} \pi - \boxed{1} - g_{V,e} \pi^{-1}$$

$$E_N = (2\pi)^4 + (2\pi)^3 + (2\pi)^2 - ((2\pi)^1 + 1 + (2\pi)^{-1}) + E_0$$

c m day / $D_{Earth\ equator}^2 = 1/(2\pi)$

 $E_e = m_e (g_{f,e} \pi + 1 - g_{V,e} \pi^{-1})$ $E_u = g_f (2\pi) + e^{-i\varphi} - g_V (2\pi)^{-1}$

Stokes' theorem: $M \parallel$ and $L \perp (annular)$

 $M = m_e r = m_e \Delta r_e^2 / (2r_{Earth}) = L/dt$ torque:

angular momentum: $L = m_e \Delta r_e^2 / (2r_{Earth}) c 2\pi dt$

The torque in a circular dimension can be calculated by placing each electron opposite another electron at a distance equal to the diameter. Thus, the Earth's radius of curvature g_v is crucial for gravity. The angular momentum L is orthogonal to this, and thus the electromagnetic interaction through a virtual photon with the 2π c. The feedback yields the relationship between m and day. The light beam in an interferometer is bent in the

Neutron: Half-life 86164 s / 10,148 $min(m_n/m_p-1)((2\pi)-1-1/(2\pi))$ = 1.0003

same way as the apsidal line of a pendulum per stellar day. For the pendulum, this corresponds to a circle of 2π and the spin of the photon is 1. This also applies to an electron in an atom. Thus, the electron consists of two particles and explains α by a polynomial of binding energies. CTP invariance is determined by the difference between synodic and sidereal time.

c m day / $D_{Farth\ equator}^2 = 1/(2\pi)$

 $-\Delta g_{\nu}(2\pi)^{-1}$ Tide: sun +-30 cm, moon +-60cm $2\pi c day$ $g_f(2\pi)$

Bobcock-Leighton solar dynamic model $c m 22 \ year / (2*696342000 \ km)^2 = 0.67 / (2\pi)$ The change in gravitational potential $(-\Delta g_v)$ corresponds to the tide and the Earth's tides of about 1 meter. Orthogonal to this is the velocity component $g_f = 2\pi$ c times one day.

The Sun's 22-year cycle and the Earth's rotation are similar according to the same formula. Only the effects are different.

Only protons and electrons are stable. The half-life of the neutron therefore depends on sidereal time and is the shortest possible polynomial $2\pi - 1 - 1/(2\pi)$.